Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cryptic genetic variants exert minimal phenotypic effects alone but are hypothesized to form a vast reservoir of genetic diversity driving trait evolvability through epistatic interactions1–3. This classical theory has been reinvigorated by pan-genomics, which is revealing pervasive variation within gene families,cis-regulatory regions and regulatory networks4–6. Testing the ability of cryptic variation to fuel phenotypic diversification has been hindered by intractable genetics, limited allelic diversity and inadequate phenotypic resolution. Here, guided by natural and engineeredcis-regulatory cryptic variants in a paralogous gene pair, we identified additional redundanttransregulators, establishing a regulatory network controlling tomato inflorescence architecture. By combining coding mutations withcis-regulatory alleles in populations segregating for all four network genes, we generated 216 genotypes spanning a wide spectrum of inflorescence complexity and quantified branching in over 35,000 inflorescences. Analysis of this high-resolution genotype–phenotype map using a hierarchical model of epistasis revealed a layer of dose-dependent interactions within paralogue pairs enhancing branching, culminating in strong, synergistic effects. However, we also identified a layer of antagonism between paralogue pairs, whereby accumulating mutations in one pair progressively diminished the effects of mutations in the other. Our results demonstrate how gene regulatory network architecture and complex dosage effects from paralogue diversification converge to shape phenotypic space, producing the potential for both strongly buffered phenotypes and sudden bursts of phenotypic change.more » « lessFree, publicly-accessible full text available July 9, 2026
-
ABSTRACT Cryptic genetic variants exert minimal or no phenotypic effects alone but have long been hypothesized to form a vast, hidden reservoir of genetic diversity that drives trait evolvability through epistatic interactions. This classical theory has been reinvigorated by pan-genome sequencing, which has revealed pervasive variation within gene families and regulatory networks, including extensive cis-regulatory changes, gene duplication, and divergence between paralogs. Nevertheless, empirical testing of cryptic variation’s capacity to fuel phenotypic diversification has been hindered by intractable genetics, limited allelic diversity, and inadequate phenotypic resolution. Here, guided by natural and engineered cis-regulatory cryptic variants in a recently evolved paralogous gene pair, we identified an additional pair of redundant trans regulators, establishing a regulatory network that controls tomato inflorescence architecture. By combining coding mutations with a cis-regulatory allelic series in populations segregating for all four network genes, we systematically constructed a collection of 216 genotypes spanning the full spectrum of inflorescence complexity and quantified branching in over 27,000 inflorescences. Analysis of the resulting high-resolution genotype-phenotype map revealed a layer of dose-dependent interactions within paralog pairs that enhances branching, culminating in strong, synergistic effects. However, we also uncovered an unexpected layer of antagonism between paralog pairs, where accumulating mutations in one pair progressively diminished the effects of mutations in the other. Our results demonstrate how gene regulatory network architecture and complex dosage effects from paralog diversification converge to shape phenotypic space under a hierarchical model of epistatic interactions. Given the prevalence of paralog evolution in genomes, we propose that paralogous cryptic variation within regulatory networks elicits hierarchies of epistatic interactions, catalyzing bursts of phenotypic change. Keyword:cryptic mutations, paralogs, redundancy, cis-regulatory, tomato, inflorescence, gene regulatory network, modeling, epistasismore » « lessFree, publicly-accessible full text available February 25, 2026
-
Abstract Pan-genomics and genome-editing technologies are revolutionizing breeding of global crops1,2. A transformative opportunity lies in exchanging genotype-to-phenotype knowledge between major crops (that is, those cultivated globally) and indigenous crops (that is, those locally cultivated within a circumscribed area)3–5to enhance our food system. However, species-specific genetic variants and their interactions with desirable natural or engineered mutations pose barriers to achieving predictable phenotypic effects, even between related crops6,7. Here, by establishing a pan-genome of the crop-rich genusSolanum8and integrating functional genomics and pan-genetics, we show that gene duplication and subsequent paralogue diversification are major obstacles to genotype-to-phenotype predictability. Despite broad conservation of gene macrosynteny among chromosome-scale references for 22 species, including 13 indigenous crops, thousands of gene duplications, particularly within key domestication gene families, exhibited dynamic trajectories in sequence, expression and function. By augmenting our pan-genome with African eggplant cultivars9and applying quantitative genetics and genome editing, we dissected an intricate history of paralogue evolution affecting fruit size. The loss of a redundant paralogue of the classical fruit size regulatorCLAVATA3(CLV3)10,11was compensated by a lineage-specific tandem duplication. Subsequent pseudogenization of the derived copy, followed by a large cultivar-specific deletion, created a single fusedCLV3allele that modulates fruit organ number alongside an enzymatic gene controlling the same trait. Our findings demonstrate that paralogue diversifications over short timescales are underexplored contingencies in trait evolvability. Exposing and navigating these contingencies is crucial for translating genotype-to-phenotype relationships across species.more » « lessFree, publicly-accessible full text available April 3, 2026
-
An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. In this work, we genetically dissected repeated origins and losses of prickles—sharp epidermal projections—that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genusSolanum. Homologs underlie prickle formation across angiosperms that collectively diverged more than 150 million years ago, including rice and roses. By developing newSolanumgenetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.more » « less
-
Abstract An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. Here we genetically dissected repeated origins and losses of prickles, sharp epidermal projections, that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genusSolanum. Strikingly, homologs promote prickle formation across angiosperms that collectively diverged over 150 million years ago. By developing newSolanumgenetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone-activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.more » « less
An official website of the United States government
